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The energy transfer due to non-linear interactions between the components of 
a gravity-wave spectrum discussed in Parts 1 and 2 of this paper is evaluated for 
a fully and partially developed Neumann spectrum with various spreading factors. 
The characteristic time scales of the energy transfer are found to be typically of 
the order of a few hours. In  all cases the high frequencies and the low-frequency 
peak are found to gain energy from an intermediate range of frequencies. The 
transfer of energy to very low frequencies and to waves travelling at large angles 
to the main propagation direction of the spectrum is negligible. Computations 
are presented also for the rate of decay of swell interacting with local wind- 
generated seas (represented by a Neumann spectrum). An appreciable decay is 
found only for swell frequencies in the same range as those of the local sea. 

1. Computation of the transfer integral 
In Part 1 of this paper (Hasselmann 1962) we derived the expression for the 

energy transfer due to non-linear interactions between the components of a 
gravity-wave spectrum. Part 2 (1963) was then concerned primarily with the 
general properties of the transfer equation and, in particular, with its analogy 
to  the Boltzmann equation. We turn now to the more practical problem of 
evaluating the energy flux for a given ocean wave spectrum in an attempt to 
assess the role the non-linear transfer process plays in the complete equation for 
the energy balance of a wind-generated spectrum (Hasselmann 1960). We 
assume in this part that the ocean is of infinite depth. 

Using the simplifications of Part 2, the transfer equation can be written in 
the form 

where 

and 
25 
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as given by equations (4.9), (4.10) of Part 1. It was shown in Part 2 that all 
four transfer coefficients of;,&;, zkin of a given quadruple interaction are equal. 

On account of the &-function in the integrand, the transfer integral is restricted 
to  the three-dimensional interaction surface 

w,+w, = W 3 f W 4  (1.3) 

in (k,, k,)-space. The transformation to the surface integral can be effected most 
simply by introducing polar co-ordinates kj, aj. From (1.2), (1.3) and the relation 
wj = (gkj)a for infinite-depth gravity waves we obtain 

2 COSP [ k2l [ k1- k,l = (.Jkl+Jk2-2/k4)4- kg- (k1- k4),, (1.4) 

where P is the angle between k, and (k, - k,). For fixed k,, a4 and given values 
of k,, cxl and k,, equation (1.4) determines p and hence cc2. We can thus solve for 
a, and express the interaction surface w1 + o2 - w3 - w, = 0 in the form 

a, = a&, a1, k2). 

Since the sign of /3 is not determined by (1.4), the surface has two sheets ail) 
and corresponding to the values + p and - p. Transforming to the spectral 
density f ( k ,  a )  = H(k) k with respect to polar co-ordinates, equation (1.1) can 
then be written in the form 

The function T has, as to be expected, an integrable singularity for sinp = 0, 
i.e. along the edge of the projection of the interaction surface on to the (k,, a,, k2)- 
space. The singularity at  k, = k4 is compensated by a zero in the rest of the 
integrand. In  evaluating (1.5) for a series of values k, and a,, some simplification 
can be achieved by making use of the symmetry and homogeneity of the transfer 
coefficients. The details need not be given here, however. 

The rate of energy transfer was computed for a number of spectra based on 
Neumann’s empirical formula for a fully developed wind-generated spectrum 
(Pierson, Neumann & James 1955) 

where E,(v) is the one-dimensional wave-height spectrum in terms of frequency Y 
(in cis) and w is the wind-velocity. All quantities are in units of metres and seconds. 

The formula (1.7) was chosen from a number of empirical spectra proposed by 
various authors not so much because it was believed to have more empirical 
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support than any other, but because (a)  the spectrum preserves its shape for 
different wind speeds, so that the influence of the wind is only to change the 
magnitude and not the form of the energy transfer, and (b)  the mean square 
wave slope is finite without having to modify the spectrum at high frequencies. 
This is desirable since the energy transfer is weighted as the wave slope rather 
than the wave height. 

Equation (1.7) determines only the one-dimensional frequency spectrum. In 
order to obtain a simple expression for the two-dimensional spectrum E,(v, a )  it 
was assumed that this could be expressed as the product of E1(v) and a frequency- 
independent spreading factor S(a)  

where 

The relation between E,  and the energy spectrum f (k, a)  is 

Three spreading factors were considered: 

S,(a) = 11227 (isotropic case). 

The first two examples are typical for the spreading factors observed under 
simple wind conditions. The last example was included as an extreme case for 
comparison. 

Since only the magnitudes but not the shapes of the function E,  and aE,/at 
depend on the wind velocity, the computations need to be carried through for 
one wind-velocity only. Rather than introducing suitable characteristic scales 
depending on v, we present all results in dimensional form for the wind-velocity 
vo = 10m/s = 19*4knots, noting that the characteristic frequency vc, wave- 
height <, and interaction time r, = E,(aE,/at)-l vary with the wind-velocity as 

v, N V- l ,  c, N &, 7, N v-'. (1.9) 

The rates of energy transfer for the spreading factor S ,  are shown, together with 
the spectra, for three directions a = 0", 30" and 60" in figure 1. The influence of 
the spreading factor on the energy transfer for a = 0" is shown in figure 2 .  The 
ordinates are adjusted so that the three spectra fall together. Pigure 3 shows 
the rate of transfer for a spectrum still in the stage of growth with a low-frequency 
cut-off at  0.16 c/s. This corresponds to a wind-duration of approximately 6 h 
according to Pierson et al. (1955). The results should be regarded with some 
caution in the region where the energy transfer changes rapidly. The ordinate 
scales in all figures are such that the curve aE,/at represents the amount the 
spectrum E,  would change if the energy transfer remained constant at  its initial 

25-2 
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value over a period of lo4 sec = 2.8 h. It is seen that even at the moderate wind 
speed of 10m/s the non-linear energy transfer is appreciable and will probably 
have a considerable influence on the energy balance of the spectrum. 

FIGURE 1.  Energy transfer for a Neumann spectrum with cos2a-spreading factor. 
(Wind velocity: 10mIs = 19.4knots.) 

The most surprising feature of the energy transfer in all cases is the growth of 
the peak,? as from the qualitative discussion of Part 1 we should have expected 
that energy is transferred from the peak to higher wave-numbers. The high wave- 
numbers do in fact gain energy, as expected, but apparently from the inter- 
mediate wave-number range rather than the peak. In  a more detailed analysis of 
the transfer integral later we shall find that a more accurate interpretation is 

t I n  a rough computation of the order of magnitude and direction of the energy flux 
(Hasselmann 1961), this feature was lost in the numerical scatter. The present computationi 
are otherwise in reasonable agreement with the original ones. 
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that the high wave-numbers gain energy from both the peak and the intermediate 
range, the peak gaining energy from the intermediate range more rapidly than 
it loses energy to the high wave-numbers. It may be pointed out that although 
very low-energy regions of the spectrum always gain energy, as the dominant 

r Spreading 

- 7 T  0 7T 

FIGURE 2. Energy transfcr for a Neumann spectrum with different spreading factors 
(a = Oo). Ordinate scales are adjusted to give coincident E,-curves. The ratio ( l / E 2 )  (aE,/at) 
is the same for each spreading factor. 

interaction term (the first term in (1.1)) is positive, the converse is not true for 
a sharp spectral peak since in this case only two of the three dominant interaction 
terms are negative. The simultaneous energy transfer from the intermediate 
wave-number range to both lower and higher wave-numbers can be explained 
to some extent by the fact that the transfer process conserves both the mean 
energy / /E2(v ,  a) dvda  and the mean 'number density' / /E2(v ,  a)  o-ldvda 
(Part 2 ) ,  since it can be readily seen that it is not possible to conserve both of 
these moments by a net energy transfer in only one direction. 

Another characteristic property of the energy transfer is the extremely weak 
energy gain at frequencies appreciably smaller than that of the peak. This can 
be explained by the eighth-power dependence of the transfer coefficient a' on 
frequency. For this reason it seems improbable that the long-period waves of 
the white, low-energy regions of the spectra observed by Munk, Miller, Snodgrass 
& Barber (1963) can be attributed to (non-stationary) non-linear interactions, 
even if the slightly favourable influence of finite depth is taken into account. 

For the spreading factors S, and 8, an extremely small energy flux was also 
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found for directions greater than 90' to the main propagation direction. The 
reason for this appears to lie both in the angular dependence of the transfer 
coefficient and the form of the interaction surface. The back scattering of waves 
by non-linear energy transfer is thus also generally a negligible effect. 

0.1 

FIGURE 3. Energy transfer for a partially developed Neumann 
spectrum with cosa a-spreading factor. 

It is found that most of the energy flux is due to interactions involving regions 
of high energy density near the peak. This explains the increase in energy 
transfer with decrease in angular spread (figure 2), since a decrease in the angular 
spread leads to an increase in the maximal spectral density in the mean propa- 
gation direction. For very small spreading angles, however, the energy flux 
must finally decrease again, since in the limiting case of a uni-directional spectrum 
the flux vanishes (Part 1). 

It is of interest to compare the computed non-linear energy flux with the 
general picture of ocean-wave development as determined by observations and 
existing theories of wave generation. The observations indicate that shorter 
waves generally grow at a faster rate than larger waves and also apparently 
begin to grow earlier. This latter feature can be explained by a combination of an 
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instability theory, such as that of Miles (1957, 1959) and the non-linear energy 
flux found for a semi-developed spectrum (figure 3) .  The energy flux to frequencies 
lower than the cut-off frequency is sufficiently large to trigger an instability 
mechanism and at the same time is limited to a rather narrow frequency band 
immediately below the cut-off frequency, so that the longer waves will tend to be 
generated successively rather than grow simultaneously at different rates. An 
alternative explanation of the observed successive generation of waves was 
given by Miles (1960) and Phillips (1961), who assume that the instability 
mechanism is triggered by an initial wave growth due to random pressure 
fluctuations (Phillips 1957). At present it is still difficult to assess the relative 
importance of instability, random-pressure and non-linear energy transfer 
mechanisms in the development of ocean waves, since quantitative calculations 
can be carried through for the first process only for laminar boundary layers, and 
the second process is determined by the three-dimensional pressure spectrum as 
a function of frequency and wave-number (Hasselmann 1961), about which 
little is known. 

The gain in energy of the spectral peak forces us to accept a rather effective 
dissipative process a t  low frequencies (if we assume that for wind-fields of 
infinite fetch and duration an equilibrium spectrum exists). The only mechanism 
which suggests itself is wave-breaking, about which, again, very little is known. 
Possibly, the pronounced peaks of fully developed spectra are determined by 
the condition that the long waves become sufficiently steep to participate in the 
wave-breaking process, as was originally implied in the Pierson et al. forecasting 
method. 

2. Swell-sea interaction 
Apart from their influence on the energy balance of wind-generated spectra, 

the non-linear interactions may also play an important role in damping swell 
from distant storms crossing through local wind seas. Formally, the latter 
problem differs from the former only in the shape assumed for the spectrum; 
in the first case we considered a smooth spectrum, whereas we shall now consider 
a swell spectrum Fs(k) consisting of a narrow peak at the wave-number k, 
superimposed on a smooth ‘local sea’ spectrum &(k). If U = /SF,(k)dk,dk, is 
then the total energy of the swell, the rate of change of U can be obtained by 
integrating (1 .1)  over a small region around k,: 

where 

Assuming that the local spectrum remains stationary, the solution to (2.1) is 
simply 

where 1/7 is the integral on the right-hand side of (2.1). The decay time 7 depends 
only on the local sea spectrum and the waye-number k, of the swell. A contour 

lJ = UOe-ti7, (2.2) 
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chart showing the dependence of r on frequency vs = ( 2 ~ ) - 1  (gk,)* and the angle 
a, between ks and the mean direction of the local sea is shown in figure 4. For 
the local sea we have again taken Neumann’s spectrum with a wind velocity of 
10m/s and the spreading factor S,. The most characteristic feature is the 
extremely sharp increase in decay time as the swell frequency falls below the 
frequency 0*125c/s of the spectral peak. The non-linear wave coupling thus 
presents practically no impedance to long-period swell passing through shorter- 
period local seas. This can again be explained by the 8th power dependence of 

FIGURE 4. Decay time 7 for swell travelling through a Neumann spectrum (wind velocity: 
10m/s, spreading factor: cosZa). The mean direction of the spectrum is upwards (a, = 0); 
the spectral peak is at 0.125 cjs. 

the transfer coefficient on frequency. The qualitative discussion by Muiik et al. 
(1963) of a particular interaction which could lead to the damping of swell com- 
ponents of periods appreciably longer than those of the local sea is not pertinent, 
since the interaction is too weak to produce a measurable effect and is further- 
more of the wrong sign.? However, we stress that the continuous energy transfer 
considered here is only one of the non-linear processes in a random sea. It is 
possible that wave-breaking could independently cause damping of long-period 
swell travelling through a local ‘saturated ’ sea. 

The dependence of the decay time on the direction of the swell is not pro- 
nounced. The damping is slightly smaller for swell travelling a t  right angles to 
the local sea than for swell in the same or opposite directions. The influence of 

t Unfortunately, the author failed to notice this in an early discussion with Munk. 
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the spreading factor of the local-sea spectrum is shown in figure 5 for the direc- 
tions m,9 = 0 and as = $7. The dependence on direction is greater for the smaller 
angular spread S,, as expected, the values for the isotropic spectrum lying 
between the maximum and minimal values of the anisotropic spectra. As will 
be shown later, the small decay times for high frequencies should be interpreted 
primarily as a broadening of the swell peak rather than a redistribution of the 
swell energy over the entire spectrum. 

Spreading factor 

0.4 0.5 

v (cis) 

FIGURE 5. Swell decay time T for different spreading factors 
of the background spectrum. 

Although it does not necessarily follow from (2.1), the value of the decay time 
7 was found to be positive in all computations, with the possible exception of a 
narrow frequency range (not shown in figures 4 and 5 )  just left of the peak of the 
local sea spectrum in which the integral 1/7 became slightly negative. However, 
the values of I/?- in this region represent a very small difference between rela- 
tively large contributions to the integral on the right-hand side of (2.1) and the 
numerical accuracy was probably not sufficient to determine the sign with 
certainty (in either case, the rate of change of the swell is negligible). 

3. Further analysis of the transfer integral 
A better understanding of the results of the previous sections can be gained by 

a more detailed analysis of the transfer integral. Clearly, a representation of the 
interaction surface o,+o,-ow,-04 = 0 for fixed k, would be desirable for this 
purpose. Unfortunately, this meets with some difficulty, as the surface is a 
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three-dimensional region of a four-dimensional space. However, a geometrical 
presentation of the set of all possible interaction can be given if we follow a 
personal suggestion by M. S. Longuet-Higgins and attempt to present not the 
set of all possible interactions for a given wave-number k, (which we should 
prefer) but rather the set of all wave-number pairs k, and k, interacting with 
a fixed pair k,, k,. From the interaction conditions for infinite-depth waves 

kl+k2 = k,+k, = k, 

$1 + 2/k2 = 4k3 + 4k4 = ./k Y, 

(3.1) 

(3.2) 

we obtain 2k1.k = k2+k;-k; = k2+k21-(.Jky-2/k1)4, 

or, normalizing to 1 kl = 1 and denoting the angle between k, and k as a,, 

(3.3) 

For fixed y ,  the locus of all wave-numbers k, is thus determined by (3.3)) the 
wave-number k, then being given by (3.1). The interaction curves for different 
values of y are shown in figure 6. Phillips’ (1960) interaction curve (k, = k4) is 
included as the case y = 4 2 .  The set of all possible interactions is given by the 
set of all end points P, P‘ of the vectors k, and k,, both points lying on the same 
interaction curve. As suitable parameters determining a given interaction we 
shall use y ,  the abscissae x1 = k, cos a, - 8 and x, = k, cos a2 - of the points 
P and P‘,t and for cases in which the wave-numbers are not normalized, k. 

We consider next the transfer coefficient a’. Since D is a fourth-order homo- 
geneous function of the interacting wave-numbers, a’ is of the form 

where c is a function of y, x, and x,. The coefficient c is shown in figure 7 for the 
two interaction configurations x, = x, and x, = - x,. In  the first case the points 
P, P’ are coincident, in the second they are symmetrically positioned about the 
vertical axis of symmetry. For a complete representation of the interaction 
coefficient, c would need to be plotted for all values of x, between - x1 and + x,. 
(For lx,l > lxll the points P and P’ can be interchanged.) However, the general 
behaviour of c is already apparent from the curves shown. The interactions are 
seen to be strongest for wave-numbers that lie parallel. This is offset by the fact 
that a t  the maximal values of c the points P and P’ represent identical wave- 
number pairs, so that the net energy transfer is balanced (Part 1). The increase 
of c with y should be attributed primarily to the choice of normalization, since 
for large values of y the interacting wave numbers become large in comparison 
to the resultant wave-numbers k. 

In  our computation examples, the dominant interactions appear to have been 
determined more by the pronounced peak of the spectrum than the behaviour of 

t Diagonally opposite points on the interaction chart represent the same wave-number 
pair. If we limit P and P’ to the upper half plane the points are then uniquely determined 
by x1 and z3. 
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the interaction coefficients. For a given wave-number k4, the strongest inter- 
actions are those involving wave-numbers close to the wave-number k, of the 
spectral peak. Unless k, is itself near &, not more than two wave-numbers, say 
k, and k,, can be in the vicinity of k, for a given interaction. However, this 

FIGURE 6. Longuet-Higgins’s interaction chart. The curve y = 4 2  
is Phillips’s (1957) ‘ figure of eight’. 

XI 

FIGURE 7. The interaction coefficient c(zl, x3, y )  for the 
interactions x1 = x3 (xl 3 0) and x1 = -x3 (xl 6 0). 
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again yields a configuration in which the two wave-number pairs are almost the 
same, so that the net energy transfer is nearly balanced. Nonetheless, the 
sharpness of the peak, combined with the behaviour of the interaction coefficients, 
appeared to outweigh the effect of the factor {...) in (1.1) vanishing for equal 
wave-number pairs, so that the energy transfer was in fact to the greater part 
due to interactions between almost identical wave-number pairs 

(k,>k,) = (k33k4) = (k>k'Ih 
The situation at the peak itself is rather more complicated and a simple quali- 
tative explanation for the net positive transfer could not be found.? At very 
high or very low wave-numbers the coupling with the peak dominates completely. 
In  this case our qualitative description can be formulated more rigorously in 
the form of an asymptotic expansion. 

4. Asymptotic expansions 
For large wave-numbers k,, the net energy change (aF(k,)/at) can be con- 

sidered to consist of two parts: the transfer (i3F(k4)/at), due to all interactions 
with wave-numbers kj greater than ek,, where t: is a small but fixed quantity, 
and the remaining transfer (%'(k,)/at), due to interactions involving at  least one 
wave-number smaller than ek,. For sufficiently large k,, the first set of interactions 
will exclude all wave-numbers contributing appreciably to the mean energy, or 
any other finite moment of the spectrum. 

In order to obtain an estimate for (aJ'(k4)/at)l, we assume that the spectrum 
preserves its form asymptotically, i.e. for k > ek, and sufficiently large k,, 

(4.1) P(k) = F(~ ' I )  V(k& @(k[ka6(k4)1-'). 
This is the case, for instance, if the spectrum falls off exponentially or as a power 
of k. From (1.1) we then find 

(y) = const. g-~p-2(k4$(k4))~z(P(k4) ~ ( k , ) ) ~ .  
1 

The evaluation of (aF(k,)/t), requires a more detailed analysis of the inter- 
action surface and transfer coefficients. According to figure 6, interactions 
between wave-numbers of appreciably different magnitudes are possible only 
for values of y very near to 1 : y = 1 + Jr ( r  < 1). Of the wave-numbers k, and k,, 
one, say k,, is then approximately equal to k,. By expanding the interaction 
equations it can further be shown that the interaction curves are almost circles 
with centres at - 4 and + +, so that k,  = k, w rk or, more precisely, 

t The growth of the peak suggests the possibility that very narrow peaks tend generally 
to develop into &functions. An investigation of this point, however, led to the result, that 
extremely narrow peaks tend to flatten, so that the growth of the peak in our case is due to 
the coupling of the peak to the rest of the spectrum (see also Part 2). 
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where k = I k,  + k,l = 1 k,  + k,l and aj is the angle between k j  and k .  Expanding 
the transfer coefficient c for small values of r then yields 

r3 

9 
c = - {(cos 8, + cos a3) [l + cos (2, - a 3 ) ] } 2  + . . .. 

If  we assume that the spectrum at k, or k, is appreciably smaller than at  k,  or 
k,, the expression {. . .} in (1.1) can be expanded also in terms of the derivatives 
of the spectrum at k,, 

wqFlFZF3 + ~3FlFzF4 - w2F1F3F4 - w1F2F3F4 = F'F3{~4VF4 - F4Vw4} (k ,  - k4) + . . . . 
By substituting these expansions in (1.1), transforming to the integration vari- 
ables k,, a,, k,, a3 and eliminating k, by the interaction condition 

it can then be shown that 
w,+w, -~w, -w4  = 0, 

(4.3) 

where f ( k , a )  = kF(k) is the spectral density in polar co-ordinates and Q is a 
trigonometrical function of the angles a,, a3. The expression O{F(k,)} depends on 
derivatives of P(k,) up to the second order. It has been assumed that ki(aF/aki) 
and kikj(a2F/ak,km) are of the same order as F or smaller. 

To compare the two contributions (4.2) and (4.3), we assume for simplicity 
that F is proportional asymptotically to some power, - q, of k. The scale factors 
6 and 7 in (4.1) are then constant, and (4.2) becomes 

whereas from (4.3) (yp) = o ( k p ) .  
2 

Hence for large k,, (aF(k,)/at), is great or small in comparison to (aF(k,)/at), 
according as q is greater or smaller than 4.25. The integral in (4.3) converges only 
if q > 4.25, which is consistent with this result. 

For a Neumann spectrum, q = 4.5, so that the energy gain at high wave- 
numbers in figures 1-3 is due predominately to interactions with the peak. The 
net energy gain a t  the peak must hence be due to interactions of the peak with 
intermediate wave-numbers, the latter losing energy to both lower and higher 
wave-numbers. 

For q < 4.25 the energy transfer at  high wave-numbers is predominantly local. 
For small q the question then arises whether the transfer integral is still convergent. 
By carrying through the corresponding expansion for interactions between k,  
and wave-numbers large in comparison to k,  it can be shown that the transfer 
integral generally converges if F(k)  J I C  is integrable. Since this corresponds to 
a moment of the same order as the mean momentum, the transfer integral is 
presumably always convergent for real spectra. 
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The asymptotic expansion for the decay time of a ‘swell’ peak of very short 
period superimposed on a continuous background spectrum &(k) can be derived 
in the same way as above. For the decay time r1 due to interactions with wave- 
numbers of the same order of magnitude as the swell wave-number k, one finds 

71, = const. g-~~-2{k,~(ks))~~~(k,) v3(k,))  (4.4) 

and for the decay time 7, due to interactions with the energy-containing range 

x [1+ cos (a, - a3)]2da,da3. (4.5) 

Hence in this case the interactions with the energy-containing range dominate 
if q is greater than only 3.25. The greater part of the swell energy is transferred 
by these interactions from the wave-number k, (=  k4) via two relatively small 
wave-numbers k, and k, to a resultant wave-number k, = k, + k, - k, which is 
still close to k,. Thus for large k, the ‘swell’ decay should be interpreted primarily 
as a broadening of the swell peak rather than a genuine damping. The asymptotic 
values of 7, as given by (4.5) are shown in figure 5. The agreement between the 
asymptotic and computed curves is good for v > 0-2 c/s. 

Asymptotic expressions for r were evaluated further for swell periods which 
were long in comparison to those of the background spectrum. The decay times 
were found to be extremely large and varied as the - 11th power of v,, in con- 
sistence with the sharp increase of the computed values of 7 at low frequencies. 
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